metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li Xu,‡ Yi-Zhi Li, San-Hui Liu, Xue-Tai Chen* and Jian-Hao Zhou

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Permanent address: Information College of Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China.

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.044 wR factor = 0.113 Data-to-parameter ratio = 11.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2-oxopyridinato *N*-oxide- $\kappa^2 O, O'$)copper(II)

The title complex, $[Cu(C_5H_4NO_2)_2]$, displays a *trans*-O₂(*N*-oxide)O₂ square-planar coordination geometry for the Cu^{II} centre. In the crystal structure, the molecules assemble into a three-dimensional structure by way of intermolecular π - π interactions and weak intermolecular C-H···O interactions.

Received 4 January 2005 Accepted 18 January 2005 Online 29 January 2005

Comment

Many metal complexes with pyridine *N*-oxide and its derivatives have been reported in the past few decades as a result of their interesting coordination chemistry (Karayannis *et al.*, 1973, 1976; Landers & Phillips, 1982; Casellato *et al.*, 1983; Riley *et al.*, 1983; Scarrow *et al.*, 1985; Lobana & Singh, 1995). However, metal complexes with chelating derivatives of pyridine *N*-oxide with donor atoms in the 2-position, such as 2-hydroxypyridine *N*-oxide (opo) (Hubbard *et al.*, 1979; Landers & Phillips, 1981), have been less well studied and little work has been carried out on the X-ray crystal structures of complexes of this class (Casellato *et al.*, 1983; Riley *et al.*, 1983). Here, we report the synthesis and structure of the square-planar title compound, [Cu(opo)₂], (I). A previous study of [Cu(opo)₂] suggested that it was a mononuclear fiveor six-coordinate complex (Landers & Phillips, 1981).

Compound (I) has a square-planar geometry around the central Cu atom, which is coordinated by two opo ligands (Fig. 1 and Table 1). The two *N*-oxide O atoms are in a *trans* configuration. The CuO₄ moiety has approximate local $\overline{1}$ symmetry. The whole molecule is nearly planar, with a maximum deviation from the mean plane of 0.284 (3) Å for atom O3. The average Cu–O bond distance of 1.919 (3) Å is

The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Li Xu et al. • $[Cu(C_{10}H_8N_2O_4)_2]$

m364

Detail of the structure of (I), showing the intermolecular π - π and weak intermolecular C-H···O interactions (dashed lines). C1g and C2g represent the centroids of the pyridine rings (see text). All H atoms, except H3 and H5, have been omitted for clarity. [Symmetry codes: (i) 1 + x, y, z; (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z;$ (iii) $-x, \frac{1}{2} + y, \frac{1}{2} - z;$ (iv) -x, 2 - y,1 - z].

The three-dimensional packing structure of (I). Dashed lines indicate $\pi - \pi$ stacking and C-H···O interactions. All H atoms, except H3 and H5, have been omitted for clarity.

comparable with those found in other complexes with a CuO₄ core, e.g. bis(1,2-dimethyl-3-hydroxypyridin-4-one-O,O')copper(II) [1.920 (2) Å; El-Jammal et al., 1994] and bis(1,2diethyl-3-hydroxypyridin-4-one-O,O')copper(II) [1.918 (2) Å; El-Jammal et al., 1994].

There are two intermolecular π - π interactions and four weak intermolecular C-H···O interactions in the crystal structure of (I) (Fig. 2 and Table 2). Chains of molecules are formed along the *a* axis through two weak intermolecular interactions between neighbouring molecules [C5-H5···O2ⁱ and C5-H5···O3ⁱ; symmetry code: (i) 1 + x, y, z]. Neigh-

bouring chains of molecules are connected to each other through two further weak interactions, resulting in a layer structure $[C3-H3\cdots O1^{ii}]$ and $C3-H3\cdots O3^{iii}$; symmetry codes: (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $-x, \frac{1}{2} + y, \frac{1}{2} - z$; Fig. 3].

Neighbouring layers interact further with each other through π - π stacking interactions between the ring systems of neighbouring pyridine rings, with $Cg1\cdots Cg2^{iv}$ 3.828 (2) Å and $Cg2 \cdots Cg1^{iv}$ 3.828 (2) Å, where Cg1 and Cg2 are the centroids of the pyridine rings containing atoms C1 and C6, respectively [symmetry code: (iv) -x, 2 - y, 1 - z].

Experimental

To a methanol solution (25 ml) of 2-hydroxypyridine N-oxide (0.55 g, 5.0 mmol) and NaOCH₃ (0.27 g, 5.0 mmol) was added CuCl₂·4H₂O (0.43 g, 2.5 mmol) with stirring. The resulting solution was stirred at room temperature for 4 h and then filtered. Blue block crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the blue precipitate from dimethylformamide (60% yield). Analysis calculated for C10H8N2O4Cu: C 42.33, H 2.84, N 9.87%; found: C 42.50, H 2.86, N 10.02%. Spectroscopic analysis: IR (KBr, ν , cm⁻¹): 3094 (m), 1623 (s, C-O), 1548 (s), 1503 (s), 1443 (m), 1361 (s), 1232 (*m*), 1183 (*s*, N–O), 1142 (*w*), 1109 (*w*), 1027 (*w*), 947 (*w*), 886 (*m*), 787 (s), 754 (s), 634 (s), 545 (w), 452 (w).

Crystal data

$[Cu(C_{10}H_8N_2O_4)_2]$	$D_{\rm x} = 1.829 {\rm Mg} {\rm m}^{-3}$
$M_r = 567.45$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 25
a = 6.873 (5) Å	reflections
b = 9.721(5) Å	$\theta = 3.0-25.0^{\circ}$
c = 15.523 (2) Å	$\mu = 2.12 \text{ mm}^{-1}$
$\beta = 96.49 \ (1)^{\circ}$	T = 293 (2) K
$V = 1030.5 (9) \text{ Å}^3$	Block, blue
Z = 2	$0.30 \times 0.20 \times 0.15 \text{ mm}$

 $R_{\rm int}=0.029$ $\theta_{\rm max} = 25.0^{\circ}$ $h = -8 \rightarrow 8$

 $k = -11 \rightarrow 7$

 $l = -15 \rightarrow 18$ 3 standard reflections

every 97 reflections

intensity decay: 0.2%

 $w = 1/[\sigma^2(F_o^2) + (0.07P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 1.66P]

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.70 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection

Siemens P4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (XPREP; Bruker, 2000) $T_{\min} = 0.612, \ T_{\max} = 0.734$ 4108 measured reflections 1820 independent reflections 1595 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.113$ S = 0.991820 reflections 154 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

1.891 (3)	Cu1-O3	1.918 (3)
1.916 (3)	Cu1-O2	1.951 (3)
97.10 (12)	O1-Cu1-O2	84.02 (12)
178.28 (12)	O4-Cu1-O2	169.56 (14)
83.99 (12)	O3-Cu1-O2	94.67 (12)
	1.891 (3) 1.916 (3) 97.10 (12) 178.28 (12) 83.99 (12)	1.891 (3) Cu1-O3 1.916 (3) Cu1-O2 97.10 (12) O1-Cu1-O2 178.28 (12) O4-Cu1-O2 83.99 (12) O3-Cu1-O2

Table 2	
Hydrogen-bonding geometry	(Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C3-H3···O3 ⁱⁱⁱ	0.93	2.57	3.332 (5)	140
$C3-H3\cdots O1^{ii}$	0.93	2.58	3.343 (5)	139
$C5-H5\cdots O3^i$	0.93	2.55	3.394 (5)	150
$C5-H5\cdots O2^i$	0.93	2.64	3.428 (6)	143

Symmetry codes: (i) 1 + x, y, z; (ii) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$; (iii) $-x, \frac{1}{2} + y, \frac{1}{2} - z$.

All H atoms were positioned geometrically and refined as riding, with C–H distances of 0.93 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *XSCANS* (Bruker, 2000); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by a Measurement Grant from Nanjing University (grant No. 0205001333).

References

- Bruker (2000). XPREP (Version 6.12), XSCANS (Version 2.10b) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Casellato, U., Vigato, P. A., Tamburini, S., Vidali, M. &. Graziani, R. (1983). Inorg. Chim. Acta, 69, 77–82.
- El-Jammal, A., Howell, P. L., Turner, M. A., Li, N. Y. & Templeton, D. M. (1994). J. Med. Chem. 37, 461–466.
- Hubbard, D., Eaton, G. R. & Eaton, S. S. (1979). Inorg. Nucl. Chem. Lett. 15, 255–258.
- Karayannis, N. M., Pytlewski, L. L. & Mikulski, C. M. (1973). Coord. Chem. Rev. 11, 93–159.
- Karayannis, N. M., Speca, A. N., Chasan, D. E. & Pytlewski, L. L. (1976). Coord. Chem. Rev. 20, 37–80.
- Landers, A. E. & Phillips, D. J. (1981). Inorg. Chim. Acta, 51, 109-115.
- Landers, A. E. & Phillips, D. J. (1982). Inorg. Chim. Acta, 59, 41-47.
- Lobana, T. S. & Singh, R. (1995). Polyhedron, 14, 907-912.
- Riley, P. E., Abu-Dari, K. & Raymond, K. N. (1983). *Inorg. Chem.* 22, 3940–3944.
- Scarrow, R. C., Riley, P. E., Abu-Dari, K., White, D. L. & Raymond, K. N. (1985). *Inorg. Chem.* 24, 954–967.