Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Li Xu, \ddagger Yi-Zhi Li, San-Hui Liu, Xue-Tai Chen* and Jian-Hao Zhou

Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China
\ddagger Permanent address: Information College of Science and Technology, Nanjing Forestry University, Nanjing 210037, People's Republic of China.

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.044$
$w R$ factor $=0.113$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(2-oxopyridinato N-oxide- $\left.\boldsymbol{\kappa}^{2} \mathrm{O}, \mathrm{O}^{\prime}\right)$ copper(II)

The title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right]$, displays a trans $-\mathrm{O}_{2}(N-$ oxide) O_{2} square-planar coordination geometry for the $\mathrm{Cu}^{\mathrm{II}}$ centre. In the crystal structure, the molecules assemble into a three-dimensional structure by way of intermolecular $\pi-\pi$ interactions and weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Many metal complexes with pyridine N-oxide and its derivatives have been reported in the past few decades as a result of their interesting coordination chemistry (Karayannis et al., 1973, 1976; Landers \& Phillips, 1982; Casellato et al., 1983; Riley et al., 1983; Scarrow et al., 1985; Lobana \& Singh, 1995). However, metal complexes with chelating derivatives of pyridine N-oxide with donor atoms in the 2-position, such as 2-hydroxypyridine N-oxide (opo) (Hubbard et al., 1979; Landers \& Phillips, 1981), have been less well studied and little work has been carried out on the X-ray crystal structures of complexes of this class (Casellato et al., 1983; Riley et al., 1983). Here, we report the synthesis and structure of the square-planar title compound, $\left[\mathrm{Cu}(\mathrm{opo})_{2}\right]$, (I). A previous study of $\left[\mathrm{Cu}(\text { opo })_{2}\right]$ suggested that it was a mononuclear fiveor six-coordinate complex (Landers \& Phillips, 1981).

(I)

Compound (I) has a square-planar geometry around the central Cu atom, which is coordinated by two opo ligands (Fig. 1 and Table 1). The two N-oxide O atoms are in a trans configuration. The CuO_{4} moiety has approximate local $\overline{1}$ symmetry. The whole molecule is nearly planar, with a maximum deviation from the mean plane of 0.284 (3) \AA for atom O3. The average $\mathrm{Cu}-\mathrm{O}$ bond distance of 1.919 (3) \AA is

Figure 1
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 4 January 2005
Accepted 18 January 2005 Online 29 January 2005

Detail of the structure of (I), showing the intermolecular $\pi-\pi$ and weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (dashed lines). $C 1 g$ and $C 2 g$ represent the centroids of the pyridine rings (see text). All H atoms, except H3 and H5, have been omitted for clarity. [Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $-x, 2-y$, $1-z]$.

Figure 3
The three-dimensional packing structure of (I). Dashed lines indicate $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. All H atoms, except H 3 and H5, have been omitted for clarity.
comparable with those found in other complexes with a CuO_{4} core, e.g. bis(1,2-dimethyl-3-hydroxypyridin-4-one- O, O^{\prime})cop$\operatorname{per}(\mathrm{II})$ [1.920 (2) \AA; El-Jammal et al., 1994] and bis(1,2-diethyl-3-hydroxypyridin-4-one- O, O^{\prime})copper(II) [1.918 (2) Å; El-Jammal et al., 1994].

There are two intermolecular $\pi-\pi$ interactions and four weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions in the crystal structure of (I) (Fig. 2 and Table 2). Chains of molecules are formed along the a axis through two weak intermolecular interactions between neighbouring molecules $\left[\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 2^{i}\right.$ and $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{O} 3^{\mathrm{i}}$; symmetry code: (i) $\left.1+x, y, z\right]$. Neigh-
bouring chains of molecules are connected to each other through two further weak interactions, resulting in a layer structure $\left[\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {ii }}\right.$ and $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 3^{\mathrm{iii}}$; symmetry codes: (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$; Fig. 3].

Neighbouring layers interact further with each other through $\pi-\pi$ stacking interactions between the ring systems of neighbouring pyridine rings, with $C g 1 \cdots C g 2^{\text {iv }} 3.828$ (2) \AA and $C g 2 \cdots C g 1^{\text {iv }} 3.828$ (2) \AA, where $C g 1$ and $C g 2$ are the centroids of the pyridine rings containing atoms C 1 and C 6 , respectively [symmetry code: (iv) $-x, 2-y, 1-z$].

Experimental

To a methanol solution (25 ml) of 2-hydroxypyridine N-oxide $(0.55 \mathrm{~g}$, $5.0 \mathrm{mmol})$ and $\mathrm{NaOCH}_{3}(0.27 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added $\mathrm{CuCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ $(0.43 \mathrm{~g}, 2.5 \mathrm{mmol})$ with stirring. The resulting solution was stirred at room temperature for 4 h and then filtered. Blue block crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the blue precipitate from dimethylformamide (60% yield). Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cu}$: C 42.33, H 2.84, N 9.87\%; found: C 42.50, H 2.86, N 10.02%. Spectroscopic analysis: IR (KBr, $v, \mathrm{~cm}^{-1}$): 3094 (m), 1623 (s, C-O), 1548 (s), 1503 (s), 1443 (m), 1361 (s), 1232 (m), 1183 ($s, \mathrm{~N}-\mathrm{O}), 1142(w), 1109(w), 1027(w), 947(w), 886(m)$, $787(s), 754(s), 634(s), 545(w), 452(w)$.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\right]$
$M_{r}=567.45$
Monoclinic, $P 2_{1} / c$
$a=6.873(5) \AA$
$b=9.721(5) \AA$
$c=15.523(2) \AA$
$\beta=96.49(1)^{\circ}$
$V=1030.5(9) \AA^{3}$
$Z=2$

$$
D_{x}=1.829 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=3.0-25.0^{\circ}$
$\mu=2.12 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.30 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (XPREP; Bruker, 2000)
$T_{\text {min }}=0.612, T_{\text {max }}=0.734$
4108 measured reflections
1820 independent reflections
1595 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-8 \rightarrow 8$
$k=-11 \rightarrow 7$
$l=-15 \rightarrow 18$
3 standard reflections every 97 reflections intensity decay: 0.2%

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.07 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$	$+1.66 P]$
$w R\left(F^{2}\right)=0.113$	where $P=\left(F_{o}^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=0.99$	$(\Delta / \sigma)_{\max }<0.001$
1820 reflections	$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
154 parameters	$\Delta \rho_{\min }=-0.70 \mathrm{e}^{-3}$
H-atom parameters constrained	

Refinement on F^{2}
$w R\left(F^{2}\right)=0.113$
1820 reflections
154 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.07 P)^{2}\right. \\
&+1.66 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.70 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.891(3)$	$\mathrm{Cu} 1-\mathrm{O} 3$	$1.918(3)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$1.916(3)$	$\mathrm{Cu} 1-\mathrm{O} 2$	$1.951(3)$
			$84.02(12)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$97.10(12)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$169.56(14)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$178.28(12)$	$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 2$	$94.67(12)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{O} 3$	$83.99(12)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2$	

metal-organic papers

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C3-H3 $\cdots \mathrm{OB}^{\text {iii }}$	0.93	2.57	$3.332(5)$	140
C3-H3 $^{\text {ii }}$	0.93	2.58	$3.343(5)$	139
C5-H5 $^{\text {i }}{ }^{\text {i }}$	0.93	2.55	$3.394(5)$	150
C5-H5 $^{\mathrm{i}} \mathrm{OO}^{\mathrm{i}}$	0.93	2.64	$3.428(6)$	143

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were positioned geometrically and refined as riding, with C-H distances of $0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Bruker, 2000); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by a Measurement Grant from Nanjing University (grant No. 0205001333).

References

Bruker (2000). XPREP (Version 6.12), XSCANS (Version 2.10b) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Casellato, U., Vigato, P. A., Tamburini, S., Vidali, M. \&. Graziani, R. (1983). Inorg. Chim. Acta, 69, 77-82.
El-Jammal, A., Howell, P. L., Turner, M. A., Li, N. Y. \& Templeton, D. M. (1994). J. Med. Chem. 37, 461-466.

Hubbard, D., Eaton, G. R. \& Eaton, S. S. (1979). Inorg. Nucl. Chem. Lett. 15, 255-258.
Karayannis, N. M., Pytlewski, L. L. \& Mikulski, C. M. (1973). Coord. Chem. Rev. 11, 93-159.
Karayannis, N. M., Speca, A. N., Chasan, D. E. \& Pytlewski, L. L. (1976). Coord. Chem. Rev. 20, 37-80.
Landers, A. E. \& Phillips, D. J. (1981). Inorg. Chim. Acta, 51, 109-115.
Landers, A. E. \& Phillips, D. J. (1982). Inorg. Chim. Acta, 59, 41-47.
Lobana, T. S. \& Singh, R. (1995). Polyhedron, 14, 907-912.
Riley, P. E., Abu-Dari, K. \& Raymond, K. N. (1983). Inorg. Chem. 22, 39403944.

Scarrow, R. C., Riley, P. E., Abu-Dari, K., White, D. L. \& Raymond, K. N. (1985). Inorg. Chem. 24, 954-967.

